Elgersburg Lectures — March 2010

Lecture |l

LINEAR TIME-INVARIANT

DIFFERENTIAL SYSTEMS




Linear time-invariant differential systems are important for
several reasons.

» They occur often in practice (both in technology and as
pedagogical examples).

» They describe nonlinear systems ‘locally’, through
linearization.

» They motivate elegant mathematics.

In this lecture we examine the mathematical structure of
LTIDSS.
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Polynomial matrices and differential operators
The structure of kernel representations

Inputs and outputs, the transfer function
Autonomous systems

Controllability and image representations
Rational symbols
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Polynomial matrices
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The study of LTIDSs basically deals with real polynomial
matrices and linear constant coefficient differential opeators.

We therefore first discuss the structure of the set of
polynomial vectors and matrices, and linear differential
operators with constant coefficients.
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A ring Is a setR equipped with two binary operations,

+:RxR—R x . RXxXR—R,

called addition and multiplication. Multiplication is usually
written by juxtaposition of the multiplied elements, rather
that with the x axb — ab. These operations satisfy:

» (R +) is an abelian group with identity elementO,
» multiplication is associative, with identity elementl,
» multiplication distributes over addition.

So for all a,b,c € R, there holds(ab)c = a(bc), written as abc,
al=1la=a, a(b+c)=ab+ac,(a+b)c=ac+bc.

Multiplication need not be commutative. If it is, we call the
ring a commutative ring
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» Of commutative rings:

Z7R[E] 7R[€17 527' y ’751'1] 7(500 (R7R) 7R(€)'
» Of non-commutative rings:

R2X2 R [E]an R [Ela 5. En]n’xn’ 7]R(€)1r1><n_

—n. 7/8-



Every elementr of a ring R has a additive inverse,—r.
But it need not have a multiplicative inverse.

For example, inR [£] only the non-zero polynomials
of degree0 have a multiplicative inverse.
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Every elementr of a ring R has a additive inverse,—r.
But it need not have a multiplicative inverse.

For example, inR [£] only the non-zero polynomials
of degree0 have a multiplicative inverse.

An elementsr € Ris called a unit if it has a multiplicative
inverse: if there existsr’ € R such thatrr’ =r'r = 1;
r’ is uniquely determined byr, and denoted byr 1.
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Every elementr of a ring R has a additive inverse,—r.
But it need not have a multiplicative inverse.

For example, inR [£] only the non-zero polynomials
of degree0 have a multiplicative inverse.

An elementsr € Ris called a unit if it has a multiplicative
inverse: if there existsr’ € R such thatrr’ =r'r = 1;
r’ is uniquely determined byr, and denoted byr 1.

The term unimodular is used as a synonym for unit for
sguare polynomial matrices. A unimodular matrix

U € R[E]™" has therefore an inversaJ ~! ¢ R[&]* " that is

also a polynomial matrix. M € R [é]"*" is unimodular if and
only if det er m nant (M) is a non-zero polynomial of degree
zero, i.e. if and only ifdet er m nant (M) isa unitin R[¢].

—n. 8/8-



Let Rbe a commutative ring. A module .#Z over R

(also called anR-module) is an abelian group(.# , +) with an
operation, calledscalar multiplication mappingRx .#Z — ./ .
Scalar multiplication is usually written by juxtaposition
lLe.,rme # forr e Randme . Z.

These operations satisfy, for all,se Randx,y € .#Z,

> r(X+Yy)=rx+ry,

> (I +S)X=rXx-+ry,

» (rs)x=r(sx), therefore written asrsx,

» IXx=x

In slang, we think of a module as a ‘vector space over a ring'.

The following example is especially important to us:
R[E]™ is a module overR [£]. So is, of courseR [E]Y.

—n. 9/8-



Free modules

An R-module .7 is said to befinitely generatedf there exist
elementsg,, 9y, ...,0, € .# (calledgeneratorsof .7),
such that each element om e .#Z can be written as

M= C101 + C2Q2 + - - + CQr, With C1,C2,...,C €R

An R-module .7 is said to befreeif there exist a set of
generators{es,e,...,e .} of . (called basisof .#) such that

C1€1 + Co€ + -+ C.&. = 0 implies ey,€,...,6. =0.

The cardinality of the basis is uniquely defined by.#, and is
called thedimension rank, or orderof ./Z .
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Submodules ofR [é]"

As already mentioned, we are especially interested in the

R [£]-module R [£]7*™ and its submodules. These are very
tame modules: they are free, hence have a basis, and behave
very much like vector spaces.

Let .# be anR [é]-submodule of R [é]". It has a basis, say

{e1,e,...,e.}. Any other basis{€},€,,...,€.} of # is
obtained by

[ell g - e(r}zu[el & .- er},

with U € R[&]"*" unimodular.
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The Smith form

The elements ofR [£]"1""2 can be brought into a simple form
by pre- and post-multiplication by unimodular matrices.

This canonical form, called the Smith form, comes in very
handy in proofs.

Theorem: Let M € R[£]™™™. Then there exist
UcR[E™M ™M andV € R[&]"7"2,

both unin_wodular, such that

dl ag (d17 d27 cc 7dr) Orx(nz—r)

O(nl—r) XT O(nl—r) X (np—r)

UMV =

Henry Smith
_ i 1826-1883

with di,dp,...,d, € R[&] monic, andd,, 1 a factor of dy for
k=12,....r—1. The numberr (the rank of M) and the

polynomialsdy,do,...,d. (the invariant polynomials of M)
are uniquely defined byM.
The proof is surprisingly simple (see Exercise Il.1).
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Differential operators
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Scalar differential equations

Consider the scalar constant-coefficient linear ODE

W EW—I— + dn_lw+ iW—O
PoW + P1 at Pn-1 e pndtn =V,

with po, pP1,..., Pa_1, Pu € C (even though we are mainly
Interested in the real case, it Is convenient — notationwise
to consider the complex case).

In shorthand, with p(&) = po+ p1é + -+ Pa_1E™ 1 + paé™,

p(§)w=0, peC[]. ()

Question which functionsw: R — C are solutions of [&)?
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Scalar differential equations

p(§w=0, peC[E] ()
The set of solutions can be described very explicitly.

Proposition 1:

Let Aq,Ao, ..., A € C be thedistinctroots of pandmy,mp, ..., m;,
their multiplicities. Of course, mg +my+---+m, = degr ee(p).
y:R — C is a solution of (&) if and only it is of the form

y(t) = r ()M + m(t)eM 4 - + m(t)eM,

with 18, 7B,..., T, € C[&]| polynomials ofdegr ee (7% ) < my for
k=12,...,r.

For pe R[], andy: R — R, simply take the real part.
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Scalar differential equations

Proposition 2

Let0# peR[é],and f € ¥® (R,R). Then there exists
y € €° (R,R) such that

p(§)y=f.
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Scalar differential equations

Proposition 2
Let0# peR[é],and f € ¥® (R,R). Then there exists
y € €° (R,R) such that

p(§)y=f.

Propositions 1 and 2 are classical results. Proposition 1 is
perhaps the most basic result from the theory of differentia
equations. Proposition 2 can be refined since the solution

space of p(&)y=f forms alinear variety of degr ee(p),
with one solution for each initial condition

d ddegree(p)—l
y(0)7 ay(0)7 S dtdegr ee(p)—ly(o)°
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Multivariable differential equations

Proposition 1 can be generalized to multivariable ODEs.
Let Pe C[E]**%, P(&) =R+ P& +---+P.é™, have
det er m nant (P) # 0. The resulting ODE is

d

—n. 16/8:



Multivariable differential equations

n . d
Py + Pl%y+ JOOSE Pn%y: 0, 1e,P (ﬁ) W=0. (doh)

The set of solutionsy : R — C¥ of this ODE

can be described as follows.

Proposition 3; Let Aq,Ao,..., A € C be thedistinctroots of
det er m nant (P) and my,my,...,m, their multiplicities.
The solutionsy : R — C* of (&) are of the form

y(t) = m(t)eM + m(t)er? + ..+ (t)eMt

with T, 1, ..., 1. € C[&]¥ polynomial vectors. The polynomial
vectors rg, vary over an me-dimensional subspace of
7 C C[é]" and havedegree(Tg) <m fork=1,2,...,r.

The subspaces/, can be described precisely in terms oP.
We do not enter into these detalils.
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Injectivity, surjectivity, and bijectivity of differenti al operators

Let P € R[&]™™"2, and consider the map
P(d):¢°(R,R%2) - ¢ (R,R™).

We study when this map is injective, surjective, or bijectie.
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Injectivity, surjectivity, and bijectivity of differenti al operators

Let P € R[&]™™"2, and consider the map
P(d): 4" R,R?2) — % (R,RY).

We study when this map is injective, surjective, or bijectie.

Proposition 4: Let P € R[E]*1*™2, The mapP () is

» Injective if and only if the complex matrix
P(A) € C*1**2 has rankn; for all A € C.

» surjective if and only if the polynomial matrix P has
rank nj.

» Dbijective if and only if n1 = no and P is unimodular.
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Injectivity, surjectivity, and bijectivity of differenti al operators

Proposition 4: Let P € R[E]*™2, The mapP (&) is

» Injective if and only if the complex matrix
P(A) € C1*"2 has rankn; for all A € C.
» surjective if and only if the polynomial matrix P has

rank ni.
» Dbijective if and only if n1 = np and P Is unimodular.

Proof: In the scalar casen; = ny = 1, this proposition is a
direct consequence of Propositions 1 and 2. Combining the

scalar case with the Smith form~» Proposition 4.
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The structure of kernel representations
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Kernel representation

[% € £7] = [% =ker nel (R (%)) for someRe R [E]*""].

R determines4, but not the other way around.
Clearly, Rand UR determine the same behavior iU is

unimodular.
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Kernel representation

[% € £7] = [% =ker nel (R (%)) for someRe R [E]*""].

R determines4, but not the other way around.
Clearly, Rand UR determine the same behavior iU is

unimodular.

This leads to the following question

d d
Ry (E)W_O and Ry (a)w_o

determine the same system?

When do
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The annihilators

Let 2 € .#%. The polynomial vectorn € R [£]V" is said to be
an [[annihilator of #] = [n(&) % =0],i.e.,n(&)w=0for
all we A.

Denote the set of annihilators of%Z by _4%. It is easy to see
that 4% isanR[]-module. Thatis,n;,np € A4z and p e R|[{]
Imply ny 4 pny € 4.
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For Re R[&]*"", let (R) denote theR [é]-submodule of
R[] generated by the rows oR.

Let .#* denote the set ofR [£]-submodules ofR [£]"™.
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For Re R[&]*"", let (R) denote theR [é]-submodule of
R[] generated by the rows oR.

Let .#* denote the set ofR [£]-submodules ofR [£]"™.

For M € .Z7, let .4y denote the behavior

dt

M ={weE” (R,RY) | m(E>W:O forall me M}.

It Is easy to see that this behavior belongs t¢¥’. In fact, if
Re R[&]*"" is a polynomial matrix whose rows are
generators ofM, M = (R), then #y = ker nel (R(&)).
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From behaviors to R [ ]-modules and back

Summarizing,

LTIDSs

O%W

Submodules
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The structure theorem

. Let B € Y. Then

Theorem

[% =kernel (R($))] < [42=(R)].
. Let #1,%r € £¥. Then
Hﬁl — %2]] A |L/V<%)1 — W«@zﬂ '

. The maps.# and . are each other’s inverse, i.e.,

S y,=% and Ngp, =M.

B

Hence there exists a one-to-one relation betwee#’"
and the R [é]-submodules ofR [&]".
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Proof in telegram-style

.| The claim is equivalentto .4, . (R(3)) = (R).

First prove the casew = 1 by applying Proposition 1 of
the section on differential operators.

Then show that, without loss of generality, it can be
assumed thatR is in Smith form.

Finally, prove the case thatRis in Smith form by
repeated application of the caser = 1.
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Proof in telegram-style

1./ The claimis equivalentto .4, ., (R(E)) = (R).

dt
» First prove the casew = 1 by applying Proposition 1 of
the section on differential operators.

» Then show that, without loss of generality, it can be
assumed thatR is in Smith form.

» Finally, prove the case thatR is in Smith form by
repeated application of the caser = 1.

2. (=) |is immediate.

2. (<) [follows from

[[<R1> — <R2>]] <~ [[3 F,F such thatRy, = F1R; and Ry = Fsz]],
which implies %1 = %.
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Proof in telegram-style

1./ The claimis equivalentto .4, ., (R(E)) = (R).

dt
» First prove the casew = 1 by applying Proposition 1 of
the section on differential operators.

» Then show that, without loss of generality, it can be
assumed thatR is in Smith form.

» Finally, prove the case thatR is in Smith form by
repeated application of the caser = 1.

2. (=) |is immediate.

2. (<) [follows from

[[<R1> — <R2>]] <~ [[3 F,F such thatRy, = F1R; and Ry = Fsz]],
which implies %1 = %.

3.|Is a consequence of 1.
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Let w= 1. Let & be described by

d d d
r]_ (&)W: O,I‘z (a)W: O,...,I‘n (&)W—O,

with rq,ro,....rp, € R[&]. The annihilators consist of all

polynomials that haver € R[], the greatest common divisor
ofrq,ro,....ry, as a factor. Hence

d
r<a>w_0

IS also a kernel representation of#.

The systemsZ* and the R [€]-submodules ofR [é] are hence
in 1« 1 relation with the monic polynomials in R [&].
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Let w = 1. Assume that, instead of taking theg® (R, R)-
solutions ofR(%) w = 0 as the behavior, we take the

¢* (R,R)- solutionsof compact supportThen there are only
two cases: either# = {0}, or Z=%¢" (R,R).

Therefore, if we had taken the* (R,R)- solutions of
compact support as the behavior, thel < 1 relation with the
R [é]-submodules ofR [£] fails.

This shows that the structure theorem is crucially dependen
on the solution concept used. The theory of LTIDSs does not
only depend onalgebra through submodules and the like,

but also onanalysis through the sulotion concept of
differential equations used.
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Inclusion of behaviors

Let %1 =kernel (Ry(&)),%2=kernel (Rx(&)). Then

(%, C %,] < [AF € R[E]*"° such thatR, = FRy]
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Inclusion of behaviors

Let %1 =kernel (Ry(&)),%2=kernel (Rx(&)). Then
(%, C %,] < [AF € R[E]*"° such thatR, = FRy]
Therefore,

[[931 — 932]] = [[3 Fl, F>eR [E].X. such that Ri= F2R2, Ro = FlRl]].

In particular,

(%, = %] if [3U e R[&]*"* unimodular such that Ry = UR].
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Minimal kernel representations

The representationR (&) w= 0 of % € £ is said to be a

minimal kernel representation if, among all kernel
representations of%4, R has a minimal number of rows.
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Minimal kernel representations

The representationR (&) w= 0 of % € £ is said to be a

minimal kernel representation if, among all kernel
representations of%4, R has a minimal number of rows.

Theorem
Let # € 7. The following are equivalent.

1. R(&)w=0is a minimal kernel representation of %.

2. The rows ofR are linearly independent.
3. Rhas full row rank.

All minimal kernel representations of & € ¥ are generated
from one, R( &) w = 0, by the transformation group

U unimodular
R — UR

Follows immediately from the structure theorem.
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Free variables
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NEEREHEES

Let T = {i,i2,...,iip} €{1,2,...,w}. Define, for
W= (W,Wo,...,W,) € € (R,R") and & € ",
MW = (Wig, Wigs .o, Wiy ),

[P = {H]IW ‘ W & 93}

By the elimination theorem (see Lecture lll),
(% ¢ 7] = [N € 2.

—n. 30/8:



NEEREHEES

The variables{w;,, W, ... ,Wim} are said to be free in
B e LI
N% =€~ (R,RM)

.e., if # does not constrain the variablegwi,,wi,, ... Wi 12
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NEEREHEES

The variables{w;,, W, ... ,Wim} are said to be free in
B e LI
N% =€~ (R,RM)

.e., if # does not constrain the variablegwi,,wi,, ... Wi 12

The variables{w;,, W, ... ’Wim\} are said to be maximally free
In e " if

» Mz =%"(R,RY),

> U= {if 5, iy} C©{1,2, W} IC T T #£T]

= [the variables {wi, ,w;, ,. WTH/ } are not free in #] .

In words, these variables are unconstrained, but adding any
other variable results in a constrained set of variables.
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Free variables in LTIDSs

Partition w= (wy,Ws),w; : R — R"1,w, : R — R"2, Let
R (&) w1 =Ry (&) wz, be a minimal kernel representation of
RBc Ltz

Proposition 5:

1. [ws is free in #| < [Ry has full row rank].

2. [wo is maximally free in 4|
< [Ry is square anddet er m nant (Ry) # 0].

Note that, by Proposition 4 from the section on differential
operators, 2. is equivalent to:

2'. W» is free and the elements of the formwy,0) € % form
a finite-dimensional subspace.
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1. (<)

1. (=)

with R; of full row rank. Therefore w; satisfiesR, (%) Wo

Proof in telegram-style

Ry (&) is surjective, hencew; is free.

If Ry does not have full row rank, then after

ore-multiplication by a unimodular matrix, the minimal
Kernel representation looks like

[ ol

W1 =

R (%) R (4],

O ank (Ry)xwy | )

R (3

[ ol

and Is hence not free.

0

—n. 32/8:



Proof in telegram-style

2. (<) |ws is free, by 1. Moreover, the elements of the form

(w1,0) € £ form a finite-dimensional subspace, and therefore
there are no additional free variables.

2. (=) |By 1. Ry has full row rank. If Ry is ‘wide’ (less rows

than columns), then it possible to delete a column fronfr; and
add it to Ry, and preserve the full row rank property. Then by
1. wp augmented with the variable fromw; corresponding to
the deleted column remains free.
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» Consider ri (%) Wi =5 (%) Wo,

with rq,ro € R[E], ri,r> =0, andwy;,wyo : R — R.
Then both w; and w, are maximally free.
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» Consider ri (%) Wi =5 (%) Wo,

with rq,ro € R[f], ri,r> =0, andwy;,wyo : R — R.
Then both w; and w, are maximally free.

» Consider g m
ax:quLBu, y=Cx+Du, w= :

uis free, and since the set of’'s corresponding tou=01s
finite-dimensional, it is maximally free. Therefore the
(u,y) behavior has a kernel representation

>(a)y=ola)

with P square anddet er m nant (P) # 0.
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Inputs and outputs
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Input/output partition

Let Z € ¥ andw = (u,y) with u maximally free in £.
Thenuis said to be input and y is said to be output In 4.
The corresponding partition w = (u,y) is said to be an
Input/output partition for £.

It follows from Proposition 5 that w= (u,y) is an input/output
partition if and only if % has a minimal kernel representation

P (@)Y= Q&) u,

with P square anddet er m nant (P) £ 0.
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Input/output partition

Theorem
Let £ € Z¥. Then there exists a partition of the index set
{1,2,...,w} into two parts, {iy,iz,...,in} and {i7,i5,...,i;
such that
U= (Wig, Wiy, .-, Wi, ), Y= (Wir,Wir,...,Wir)
IS an input/output partition for 4.
Wi, | _Will_
inputs V\{iz Syste outputs W_ilz
_Wim_ V\;ii)

—n. 36/8:



Input/output partition

Theorem

Let £ € Z¥. Then there exists a partition of the index set
{1,2,...,w} into two parts, {iy,iz,...,in} and {i7,i5,...,i;

such that

')

U= (Wil,Wiz,...,Wim), Y= (Will,Wi/Z,...,Wip

IS an input/output partition for 4.

Proof: Let R()w = 0be a minimal kernel representation of

%. Choose{il, iy, ... ,i,} such that the columns{iy, i5,...,i}}
of Rform a square and nonsingular matrix.
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Input/output partition

Theorem
Let £ € Z¥. Then there exists a partition of the index set
{1,2,...,w} into two parts, {iy,iz,...,in} and {i7,i5,...,i;

such that

')

U= (Wil,Wiz,...,Wim), Y= (Will,Wi/Z,...,Wip

IS an input/output partition for 4.

It follows from the construction used in this proof that an
iInput/output partition for £ is in general not unique.
However, thenumberof input and output components is
uniquely determined by 4.
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Integer invariants

m: Z°*—N, nH): =t
p: Z°*— N, p(A):= the number of output components in4,
w: Z°—N, wH) =t

ne number of input components in%,

ne number of real variables in 4.

Of coursem+p = w.
Note the following formulas for p:
p(#) =di mensi on (A4%).

p(#) =rowdi nensi on (R)
with R(&)w = 0a minimal kernel representation of %.
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The transfer function

Let w= (u,y) be an input/output partition of
B e Lm#)*p(%) \with kernel representation

d d
*(a)v-o(@)
Them (%) x p(#) matrix of real rational functions
G=P'Q

IS called the transfer function corresponding to this
Input/output partition.
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The transfer function

Them (%) x p(#) matrix of real rational functions
G=P'Q
IS called the transfer function corresponding to this

Input/output partition.

Note that for eachA € C, not a pole ofG, and for each
u, € C*#) the exponential trajectory

t— (Ut y elt), with y, = G(A)u,,

belongs to%# (complexified).

The transfer function can be defined by means of this formula
for the exponential response.
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Proper transfer functions

The real rational function f = § € R(€),n,d € R[&] is said to
be | proper | :«< [degree(d) > degr ee(n)].

A matrix of real rational functions is said to be
| proper | :< [each element of the matrix is propef.
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Proper transfer functions

The real rational function f = § € R(€),n,d € R[&] is said to
be | proper | :«< [degree(d) > degr ee(n)].

A matrix of real rational functions is said to be
| proper | :< [each element of the matrix is propef.

Theorem

Let # € £Y. Then there exists a partition of the in-
dex set{1,2,...,w} into two parts, {ig,i2,...,iyz)} and
{i7,i5, .. .,ié(%)} such that

U= (Wig, Wiy, -, Wi )y Y= (Wi, Wir o W)

p(#)

IS an input/output partition for % with a proper transfer
function.
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Proper transfer functions

Theorem

Let # € £Y. Then there exists a partition of the in-
dex set{1,2,...,w} into two parts, {iy,i2,...,iyz)} and
{i7,i5,.. .,ié(%)} such that

U= (Wig,Wip, -, Wi )y Y= (Wi, Wir o W)

IS an input/output partition for % with a proper transfer
function.

Proof: When selectingp (%) columns ofR corresponding to a

minimal kernel representation R (&) w= 0 of 4, choose the
columns{iy,i5, ..., i;(%} such that the determinant of the

matrix formed by these columns has largest degree among all

p(A) x p(A) submatrices ofR.
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Significance of a proper transfer functions

» For continuous-time system the significance of a proper
transfer function lies in the fact that
the output is at least as smooth as the input.

Unfortunately, this cannot be illustrated in our
¢ ”-setting. However, if the behavior is defined as a set of
distributions, properness comes down to the implication

[(uy) € 2B, ue%k(R R™# )]]:>[[ye<€k(R RP(# ))]]
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Significance of a proper transfer functions

» For continuous-time system the significance of a proper
transfer function lies in the fact that
the output is at least as smooth as the input.

Unfortunately, this cannot be illustrated in our
¢ ”-setting. However, if the behavior is defined as a set of
distributions, properness comes down to the implication

[(uy) € 2B, ue%k(R R™# )]]:>[[ye<€k(R RP(# >)]]

» For discrete-time systems, properness implies that
the output does not anticipate the input.
This is made precise in Exercise Il.5.
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» Consider

d u
th +bU, Y + DU, y

In order to compute the transfer function, it is perhaps
easiest to proceed via the exponential response. This

yields

G(&)=D+C(E-A)'B
for the transfer function. This matrix of rational
functions is proper, hencey is at least as smooth as.
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Autonomous LTIDSs
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PAST /

0” .
& time
. J

-,
- .
.........

K 3
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autonomous = the past implies the future.
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Characterization of autonomous LTIDSs

Theorem

The following are equivalent for # € .£".
2 IS autonomous.
A is a finite-dimensional subspace o (R, R").
2% has a kernel representatiorﬂ(%) w = 0 with Rof
rank w.

% has a minimal kernel representationR ($)w =0
with R square anddet er m nant (R) # 0.

m (%) =0, equivalently,p (%) = w (A).
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Characterization of autonomous LTIDSs

Theorem

The following are equivalent for # € .£".
2 IS autonomous.
A is a finite-dimensional subspace o (R, R").
2% has a kernel representatiorﬂ(%) w = 0 with Rof
rank w.

% has a minimal kernel representationR ($)w =0
with R square anddet er m nant (R) # 0.

m (%) =0, equivalently,p (%) = w (A).

The proof follows readily from the Smith form and
Propositions 1 and 3 of the section on differential operatcs.
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Characterization of autonomous LTIDSs

Theorem

The following are equivalent for # € .£".
2 IS autonomous.
A is a finite-dimensional subspace o (R, R").
2% has a kernel representatiorﬂ(%) w = 0 with Rof
rank w.

% has a minimal kernel representationR ($)w =0
with R square anddet er m nant (R) # 0.

m (%) =0, equivalently,p (%) = w (A).

With R minmal, there holds, forw =1,
di mensi on(#) = degr ee(R), while for w > 1,
di mensi on(#) = degr ee(det er m nant (R)).
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Autonomous LTIDSs

Each trajectory w of an autonomous% € .Z"¥ is a sum of
products of a polynomial and an exponential in the complex

case,
w(t) = mm(t)eMt + m(t)e? + - 4 (t)eM,

with 75, € C|&|¥ and A, € C. In the real case, it is a sum of
products of a polynomial, an exponential, and a trigonometic

function,
w(t) = i (t)eMcos (ant) + 1 (t)eM'si n(ct)
+ 15(t)eMcos (wpt) + 15 (1) si n(cpt)
+ 1 (H)eMcos (wpt) + () eMsi n(wt),

with 7, 77/ €e R[&]",Ax € R, and w; € R.
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Stability
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stability : < all trajectories go to O.

=
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stability : < all trajectories go to O.

For % € £, there holds | % stable] = [% autonomoug.
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Stability of LTIDSs

Theorem

The following are equivalent for # € Z".
A is stable.
Every exponential trajectory t— ela, ae C,
in % (complexified) hasReal (A) < 0.

% has a kernel representationR (&) w = 0 with
rank (R) =wand
[rank(R(A)) <w,A € C]| = [Real (A) < 0.

% has a minimal kernel representation R(&)w = 0
with R Hurwitz.

A polynomial € C[€] is said to be Hurwitz if all its roots are

iIn {A € C|Real (A) <0}. PeC[&]™*"is said to be Hurwitz
If it is square and det er m nant (R) is Hurwitz.
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Controllability and stabilizability
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controllability : < concatenability of trajectories after a delay
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Controllability of LTIDSs

Theorem

The following are equivalent for # € £".
1. #is controllable.

2. % has a kernel representationR (&) w= 0 and
R(A) has the same rank for allA € C.

3. Az, the R |&]-module of annihilators of 4, is closed.

4. % has a direct summand, iI.e., there exists
# e LY suchthat Bp %' =€ (R,RY).

The closure of theR [é]-submodule.# of R[&]" is defined as
MOV — fMeR[E]Y | I meR[E], T#0,

and m e .# such thatm= rim}.
/4 is said to be closed if.# = .z closure
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Proof in telegram-style

First prove that if U € R[&]"*" is unimodular, then 2 is

controllable if and only if U (&) % is controllable.

Conseguently, we may assume tha¥ has a minimal kernel
representation with Rin Smith form,

R= {di ag(dy,dz,...,d;) OrX(W—r)} '

1. < 2.

Observe, using the theory of autonomous systems, th&# is
controllable if and only if all the invariant polynomials
di,do,...,d. of Rare equal to one. Equivalently, if and only if
2. holds.
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Proof in telegram-style

Consequently, we may assume tha¥ has a minimal kernel
representation with Rin Smith form,

R= [di ag(ds,dz,...,d;) OrX(W—r)} '

2. < 3.

Observe that. 4z = |R[&]d; --- R[é]d, O --- Of.

Hence .4 Is closed if and only if all the invariant polynomials
di,do,...,d. of Rare equal to one. Equivalently, if and only if
2. holds.

—n. 52/8:



Proof in telegram-style

Consequently, we may assume tha¥ has a minimal kernel
representation with Rin Smith form,

R= [di ag(ds,dz,...,d;) OrX(W—r)} '

3. = 4.

Take for %’ the system with kernel representation
R (%) w = 0, with R = |:OW—r><r I(W—I‘)X(W—I‘)i| .
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Proof in telegram-style

4. = 3.

Note that [Z® B = € (R, R¥)| <[ ANp ® N = R[E]V].
Let R (&)w = 0be a minimal kernel representation of %'

Then A4z ® Az = R[&E]" implies that the rows of

basis for R [£]**¥. Equivalently, that

R

R

R
R

IS unimodu

form a

al.

Hence that the invariant polynomials of R are all equal to one.
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» Consider the single-input/single output system

Dy—q(L)u w=|

with p,q € R[&]. This system is controllable if and only if
the polynomials p and g are coprime.

The problem of common factors inp and g and their
Interpretation has been a long-standing question in the
field. Behavioral controllability demystifies this.

We now understand that common factors correspond
exactlyto lack of controllability.
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» Applying the controllability theorem and the relation
between behavioral and state controllability discussed in
Lecture I, shows that the system

d
ax:Ax—kBu, y=CX+Du, w=

u

X <

IS controllable if and only if

rank([|nxn)\_A ; B]):n forall A € C.

This state version of this
controllability test is called the
PBH (Popov-Belevitch-Hautus)
test. The controllability theorem gl A
is therefore a generalization | ®iW

Of thiS Classical result_ Vitold Belevitch Malo Hautus
(1921-1999) (1940- )
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The port behavior of the RLC circuit (will be discussed in
Lecture IlI)

IS controllable unless

CRC:% and R. = Rc.

This shows that lack of controllability can occur in
non-degenerate physical systems.
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Geometric interpretation of controllability

Attach to each point the Riemann sphere (think of the
Riemann sphere a<C), kernel (R(A)),A € C. This

associates with eaclA € C, a linear subspace ofC". In
general, this yields a picture shown below. Since the

dimension of the subspace attached may change, we obtain a
‘'sheaf’.

kernel (R(A))

| Riemann sphere}

Bernhard Riemann
1826-1866

/
-
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Geometric interpretation of controllability

Attach to each point the Riemann sphere (think of the
Riemann sphere as(), ker nel (R(A)),A € C. This

associates with eaciA € C, a linear subspace ofC".

The dimension of the subspace attached is constant, that is,
we obtain a ‘vector bundle’ over the Riemann sphere, if and
only if the system is controllable.

Riemann sphere

Bernhard Riemann
1826-1866

kernel (R(A)
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stabilizability : < all trajectories can be steered td).
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Stabilizability of LTIDSs

Theorem

The following are equivalent for # € .£".
1. A is stabilizable.

2. % has a kernel representationR (&) w = 0

and R(A) has the same rank
forall A € {A’ € C|Real (A") >0}.
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Proof in telegram-style

2. = 1.

First assume thatRis in Smith form. Prove that if 2. Is
satisfied, then the firstr components ofw are polynomial
exponentials, with exponentials having negative real part
while the remaining components ofw are free. Conclude
stabilizability.

1. = 2.

Conversely, If 2. is not satisfied, then there is a solution wgse
first component is an exponential with real part> 0.

This exponential cannot be steered to zero, and the system is
not stabilizable.
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Proof in telegram-style

Next, consider generaR's. The solutions are now of the form
w=U (&)w with U € R[&]"*" unimodular, and w a solution
corresponding to the Smith form of R. The arguments extend,
since polynomial exponentials are converted by (&) to

polynomial exponentials with the same exponential
coefficients.
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Controllability

and

image representations
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Images

We have seen plenty of kernels. It is time to discuss images.

w=M ($)7.
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Images

We have seen plenty of kernels. It is time to discuss images.

w=M ($)7.

Elimination theorem (see Lecture Ill) = an image is a kernel.

What is special about images ?

—n. 61/8:



The image representation theoren

Theorem

The following are equivalent for # € .£".
1. #is controllable.
2. % has a image representation

w=M ().

Images have a nice system theoretic interpretation!
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Proof in telegram-style

1. = 2.

By controllability, the invariant polynomials of R, with

R(&)w=0a minimal kernel representation of %, are equal

to one. Therefore,R=V [Irxr Orx(w_r)} U, with U,V

unimodular. 1t follows that W:U_l(%) Orx (w—1) ¢

(1) x (w—1)

IS an iImage representation of#4. - -

2. = 1.

The extended behavior{(w,¢) | w= M (%) ¢} is controllable,

since {IWXW —M(A)| has rankw for all A € C.
This implies that the projection is controllable.

—n. 63/8:



Observability and detectabillity




observed w; W, to-be-deduced

observability :< w»> may be deduced fromw;.

11l Knowing the laws of the system !!!
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The observability theorem

Theorem

The following are equivalent for Z ¢ £v11v2,
B CE* (R,R"1 x R¥2),

1. w» IS observable fromwy In 4.

2. % has a kernel representationRy (&) w1 = R (&) Wa,
with rank (Rx(A)) =wp forall A € C.

3. % has a minimal kernel representation

wo =F ($)w1, R(&)wi=0.
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Proof in telegram-style

1. & 2.

[Observability] < [R (&) is injective] < [2]
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Proof in telegram-style

1. & 2.

[Observability] < [R (&) is injective] < [2]

2. & 3.

(«) is obvious. To prove(=-), observe that 2. implies thatR,

. | o . .
is of the form R, =V OZX 21 U, with V,U unimodular.
o X W

Therefore % admits the kernel representation

d d ,
5 (§ou(§)on ()0

leading to 3.
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The detectability theorem

Theorem

The following are equivalent for Z ¢ £v11v2,
B CE* (R,R"L x R¥2),

1. w» IS detectable fromw; In 4.

2. % has a kernel representationRy () w1 = R (&) Wo,
with rank (Rx(A)) =wafor A € {A’ € C| Real (A") > 0}.
3. % has a minimal kernel representation

d d d
H <a> W2: F <a> W]_7 R(&) W]_:O,

with H Hurwitz.

The proof is analogous to that of the observability theorem.
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The controllable part
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The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable
Is defined as

1. Beontrollable€ L,
2. c%}controllableg 93,
3. [# C % and %’ controllable] = [%A' C Beontrollabld -

Hence ZeontroliablelS the largest controllable system contained
In A.
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The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable
Is defined as

1. Beontrollable€ £,

2. c%}controllableg B,

3. [# C % and %’ controllable] = [%A' C Beontrollabld -
Hence ZeontroliablelS the largest controllable system contained
In 4.

Let R(&)w = 0 be a minimal kernel representation of 2.
The polynomial matrix R can be factored asR=FR/, with

F e R[EPW*PP) gnd with R € R [E]P¥)*¥(F) such that

R(A) has the same rank for allA € C. ThenR (&)w=0is a
kernel representation of Zeontrollable

—n. 70/8:



The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable
Is defined as

1. PBeontrollable€ £,

2. c%}controllableg B,

3. [# C % and %’ controllable] = [%A' C Beontrollabld -
Hence ZeontroliablelS the largest controllable system contained

In 4.
¢* (R,R¥(Z)
There holds PBeontrollable= HBcompact ( )7
where Zcompactdenotes the set of compact support trajectories

. €% (R,R¥(%)
N %, and %Compact ( )

¢~ (R,R*(#))-topology.

the closure of %compactin the
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The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable
Is defined as

1. PBeontrollable€ £,

2. c%}controllableg 93,

3. [# C % and %’ controllable] = [%A' C Beontrollabld -
Hence ZeontroliablelS the largest controllable system contained
In 4.

Every % € ¥ admits a decomposition & = %1 & Ao,

with #1 € £" controllable and %, ¢ .Y autonomous In
every such a decomposition#1 = PBeontrollable
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Controllability and transfer functions

Consider the input/output systems

Py (%) y1 = Q1 (%) up, P (%) yo = Qo (%) U,

with det er m nant (Py) # 0, anddet er m nant (P,) # 0.

These two systems have the same transfer function,

P, 'Q1 =P 'Qy,

If and only if they have the same controllable part.

Therefore, the transfer function determines only the
controllable part of a system.
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Rational symbols
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Transfer functions

In system theory, it is customary to think of dynamical modes

In terms of inputs and outputs, viz.

In the LTI case, this leads to transfer functions,

outputs

y = G(s)U, with G a matrix of rational functions. - e macus

Usually, transfer functions are interpreted

In terms of Laplace transforms, with

conditions and domains of convergence,

and other largely irrelevant mathematical traps.

We now learn to interpret 'y = GU’
In terms of differential equations.

LAPLACE
naer  VAI8Y L,

AR
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Factorizations of rational matrices

M e RI[E]**° is left prime (over R [€]) i<

[M =FM, with F,M € R[£]*"°] = [F is unimodular].
It follows from the Smith form that every M € R[&]*** of full
row rank can be written as M = FM’ with F € R[£]*”* square
and nonsingular, andM’ € R [£]*”® left prime.
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Factorizations of rational matrices

M e RI[E]**° is left prime (over R [€]) i<
[M =FM, with F,M € R[£]*"°] = [F is unimodular].
It follows from the Smith form that every M € R[&]*** of full
| D

row rank can be written asM = FM’ with F e R[&]°"° square
and nonsingular, andM’ € R [£]*”® left prime.

A left coprimepolynomial factorization of M € R(§)**®is a
pair (P,Q), with PQ € R[&]**, P square and nonsingular,
M = P~1Q, and [P: Q] left prime.

It is easily seen everyM € R(&)*** admits a left coprime

polynomial factorization. In the scalar case this simply mans
writing M as a ratio of polynomials without common roots.

—n. 74/8:



Factorizations of rational matrices

M e RI[E]**° is left prime (over R [€]) i<

[M =FM, with F,M € R[£]*"°] = [F is unimodular].
It follows from the Smith form that every M € R[&]*** of full
row rank can be written as M = FM’ with F € R[£]*”* square
and nonsingular, andM’ € R [£]*”® left prime.

A left coprimepolynomial factorization of M € R(§)**®is a
pair (P,Q), with PQ € R[&]**, P square and nonsingular,
M = P~1Q, and [P: Q] left prime.

It is easily seen everyM € R(&)*** admits a left coprime

polynomial factorization. In the scalar case this simply mans
writing M as a ratio of polynomials without common roots.

Right prime and right coprime polynomial factorizations are
defined analogously.
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ODEs with rational symbols

Defining what a solution is ofR( ) w = 0 poses no difficulties

worth mentioning when R is a polynomial matrix.
But what do we mean by a solution whdRis a matrix of
rational functions?
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ODEs with rational symbols

Let F € R(¢)**®, and consider the ‘differential equation’

d
F(a>w_0

w e ¢” (R,R") satisfies this differential equation:<

d
Qg )w=0

whereF = P~1Qis a left coprime polynomial factorization.
This definition is independent of the particular left coprime
polynomial factorization of F that is taken.

—n. 75/8:



ODEs with rational symbols

By definition, therefore, the behavior defined byF (§)w=0is

equal to that of Q (&) w= 0. F is called the ‘symbol’
associated with this representation.
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ODEs with rational symbols

By definition, therefore, the behavior defined byF (§)w=0is

equal to that of Q (&) w= 0. F is called the ‘symbol’
associated with this representation.

The use of rational symbols in addition to the polynomial
symbols has proven to be very valuable. In Exercise 1.6, we
seenorm-preserving representations. These require rational

symbols.
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Justification

AssumeG proper. Let $x = Ax+Bu,y =Cx-+Dube a
controllable system with transfer function G, i.e.,
G(&) =C(1& — A)"'B+D. Consider the output nulling inputs

X = AX+Bw,0 = Cx+ Dw.
Thesew's are exactly those that satisfyG (&) w= 0. For G not

proper, take G(&) = C(1€ — A)~1B+ D(&) with D polynomial,
and

d
th AX+Bw, 0 = Cx+ D( g )W
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Justification

AssumeG proper. Let $x = Ax+Bu,y =Cx-+Dube a
controllable system with transfer function G, i.e.,
G(&) =C(1& — A)"'B+D. Consider the output nulling inputs

X = AX+Bw,0 = Cx+ Dw.

Thesew's are exactly those that satisfyG (&) w= 0. For G not
proper, take G(&) = C(1€ — A)~1B+ D(&) with D polynomial,
and
d
th AX+Bw, 0 = Cx+ D( g )W

Consider the input/output system with transfer function.
Take your favorite definition of input/output pairs.

The output nulling inputs are those that satisfyF (&) w = 0.
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Controllability

Since rational symbols lead to LTIDSs, the notions of
controllabllity, stabilizability, observability, detec tability, etc.
still pertain to systems defined by rational symbols. In
particular, it can be shown that the ‘image representation’

d
W—G<a>€

IS still controllable with G rational.
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Rational transfer functions

Viewing the input/output system

d u
y_G<a)m =yl

with G rational, as a system defined in terms of a rational
symbol.

This leads to a definition of its behavior and of the
Input/output pairs that is completely independent of Laplece
transforms and its mathematical finesses and traps.

In particular, it can be shown that y =G (%) W =

always defines a controllable behavior.
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d) . . . .
F (E) IS not a map! It associates with an input

ue ¢ (R,R*) many (a finite-dimensional linear variety)

outputsy € % (R,R*) such thaty =F (%) u

d) .
F (E) IS a one-to-many map.
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dt
ue ¢ (R,R*) many (a finite-dimensional linear variety)

outputsy € % (R,R*) such thaty =F (%) u.

F (—) IS not a map! It associates with an input

d) .
F (E) IS a one-to-many map.

The operatorsF; (%) and F (%) for F,F € R(&) need

not commulte.
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Recapitulation
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» There exists a one-to-one relation between the LTIDSS In
#¥ and the R [£]-submodules ofR [£]"7.
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There exists a one-to-one relation between the LTIDSS In
#¥ and the R [£]-submodules ofR [£]"7.

The variables of a LTIDS allow a componentwise
partition in inputs and outputs.
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There exists a one-to-one relation between the LTIDSS In
#¥ and the R [£]-submodules ofR [£]"7.

The variables of a LTIDS allow a componentwise
partition in inputs and outputs.

There exists tests for verifying controllability and
observability of LTIDSSs.

A LTIDS is controllable if and only if it allows an image
representation.
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There exists a one-to-one relation between the LTIDSS In
#¥ and the R [£]-submodules ofR [£]"7.

The variables of a LTIDS allow a componentwise
partition in inputs and outputs.

There exists tests for verifying controllability and
observability of LTIDSSs.

A LTIDS is controllable if and only if it allows an image
representation.

LTIDSs also allow representations with rational symbols.
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End of Lecture I
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